GIL Knocker
pip install gilknocker
When you thought the GIL was available, and you find yourself suspecting it might be spending time with another.
You probably want py-spy, however if you're looking for a quick-and-dirty way to slip in a GIL contention metric within a specific chunk of code, this might help you.
How?
Unfortunately, there doesn't appear to be any explicit C-API for checking how busy the GIL is. PyGILState_Check won't really work, that's limited to the current thread. PyInterpreterState is an opaque struct, and the PyRuntimeState and other goodies are private in CPython.
So, in ~200 lines of Rusty code, I've conjured up a basic metric that seems to align with what is reported by py-spy
when running the same test case. This works by spawning a thread which, at regular intervals, re-acquires the GIL and checks how long it took for the GIL to answer.
Note, the interval (interval_micros
) is configurable. The lower the value, the more accurate the metric, but will be more likely to slow your program down.. because it will play a larger role in competing for the GIL's attention.
Use
Look at the tests
from gilknocker import KnockKnock
knocker = KnockKnock(interval_micros=1000, timeout_secs=1)
knocker.start()
... smart code here ...
knocker.contention_metric # float between 0-1 indicating roughly how busy the GIL was.
knocker.reset_contention_metric() # reset timers and meteric calculation
... some more smart code ...
knocker.stop()
knocker.contention_metric # will stay the same after `stop()` is called.
How will this impact my program?
Short answer, it depends, but probably not much. As stated above, the more frequent the monitoring interval, the more likely GIL bound tasks will be affected. This is demonstrated in the benchmarks testing. Below is a summary of benchmarking two different functions, one which uses the GIL, and one which releases it. For interval=None
this means no polling was used, effectively just running the function without gilknocker
. Otherwise, the interval represents the value passed to KnockKnock(interval_micros=interval)
python -m pytest -v --benchmark-only benchmarks/ --benchmark-histogram
---------------------------------------------------------------------------------------------- benchmark: 12 tests ----------------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bench[a_lotta_gil-None] 697.6828 (1.0) 804.5402 (1.11) 755.6981 (1.06) 53.0970 (61.53) 777.1266 (1.09) 101.6509 (83.91) 2;0 1.3233 (0.95) 5 1
test_bench[a_lotta_gil-10] 707.0513 (1.01) 724.3552 (1.0) 714.4783 (1.0) 6.8460 (7.93) 715.2083 (1.0) 10.0545 (8.30) 2;0 1.3996 (1.0) 5 1
test_bench[a_lotta_gil-1000] 708.0325 (1.01) 742.4564 (1.02) 722.2247 (1.01) 12.6517 (14.66) 721.7707 (1.01) 12.5343 (10.35) 2;0 1.3846 (0.99) 5 1
test_bench[a_lotta_gil-10000] 716.1168 (1.03) 791.8905 (1.09) 733.0825 (1.03) 32.9744 (38.21) 717.7345 (1.00) 23.2516 (19.19) 1;1 1.3641 (0.97) 5 1
test_bench[a_lotta_gil-100000] 758.2248 (1.09) 760.4424 (1.05) 759.2441 (1.06) 0.8629 (1.0) 758.9144 (1.06) 1.2114 (1.0) 2;0 1.3171 (0.94) 5 1
test_bench[a_lotta_gil-100] 760.8787 (1.09) 839.1526 (1.16) 777.9811 (1.09) 34.2144 (39.65) 763.4823 (1.07) 20.4199 (16.86) 1;1 1.2854 (0.92) 5 1
test_bench[a_little_gil-None] 1,505.1989 (2.16) 1,510.2234 (2.08) 1,508.0564 (2.11) 1.8985 (2.20) 1,508.2229 (2.11) 2.5074 (2.07) 2;0 0.6631 (0.47) 5 1
test_bench[a_little_gil-100000] 1,506.0053 (2.16) 1,559.4051 (2.15) 1,531.3341 (2.14) 22.6875 (26.29) 1,524.5321 (2.13) 38.7802 (32.01) 2;0 0.6530 (0.47) 5 1
test_bench[a_little_gil-10000] 1,508.9686 (2.16) 1,521.0912 (2.10) 1,515.0701 (2.12) 5.5128 (6.39) 1,514.7033 (2.12) 10.3673 (8.56) 2;0 0.6600 (0.47) 5 1
test_bench[a_little_gil-1000] 1,534.0449 (2.20) 1,540.6296 (2.13) 1,537.8621 (2.15) 2.5307 (2.93) 1,538.5808 (2.15) 3.4261 (2.83) 2;0 0.6503 (0.46) 5 1
test_bench[a_little_gil-100] 1,566.4128 (2.25) 1,576.2634 (2.18) 1,569.6245 (2.20) 4.0978 (4.75) 1,567.4297 (2.19) 5.3087 (4.38) 1;0 0.6371 (0.46) 5 1
test_bench[a_little_gil-10] 1,587.1471 (2.27) 1,597.2920 (2.21) 1,592.0651 (2.23) 3.7001 (4.29) 1,591.2409 (2.22) 4.1942 (3.46) 2;0 0.6281 (0.45) 5 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------