faux
A library to create mocks out of structs.
faux
allows you to mock the methods of structs for testing without complicating or polluting your code.
See the API docs for more information.
Getting Started
faux
makes liberal use of unsafe Rust features, so it is only recommended for use inside tests. To prevent faux
from leaking into your production code, set it as a dev-dependency
in your Cargo.toml
:
[dev-dependencies]
faux = "^0.1"
faux
provides two attributes:
#[create]
: transforms a struct into a mockable equivalent#[methods]
: transforms the methods in animpl
block into
Use Rust's #[cfg_attr(...)]
to gate these attributes to the test config only.
#[cfg_attr(test, faux::create)]
pub struct MyStructToMock { /* fields */ }
#[cfg_attr(test, faux::methods)]
impl MyStructToMock { /* methods to mock */ }
Examples
mod client {
// #[faux::create] makes a struct mockable and
// generates an associated `faux` function
// e.g., `UserClient::faux()` will create a a mock `UserClient` instance
#[faux::create]
pub struct UserClient { /* data of the client */ }
#[derive(Clone)]
pub struct User {
pub name: String
}
// #[faux::methods ] makes every public method in the `impl` block mockable
#[faux::methods]
impl UserClient {
pub fn fetch(&self, id: usize) -> User {
// does some network calls that we rather not do in tests
User { name: "".into() }
}
}
}
use crate::client::UserClient;
pub struct Service {
client: UserClient,
}
#[derive(Debug, PartialEq)]
pub struct UserData {
pub id: usize,
pub name: String,
}
impl Service {
fn user_data(&self) -> UserData {
let id = 3;
let user = self.client.fetch(id);
UserData { id, name: user.name }
}
}
// A sample #[test] for Service that mocks the client::UserClient
fn main() {
// create a mock of client::UserClient using `faux`
let mut client = client::UserClient::faux();
// mock fetch but only if the argument is 3
// argument matchers are optional
faux::when!(client.fetch(3))
// stub the return value for this mock
.then_return(client::User { name: "my user name".into() });
// prepare the subject for your test using the mocked client
let subject = Service { client };
// assert that your subject returns the expected data
let expected = UserData { id: 3, name: String::from("my user name") };
assert_eq!(subject.user_data(), expected);
}
Due to constraints with rustdocs, the above example tests in main()
rather than a #[test]
function. In real life, the faux attributes should be gated to #[cfg(test)]
.
Features
faux
lets you mock the return value or implementation of:
- Async methods
- Trait methods
- Generic struct methods
- Methods with pointer self types (e.g.,
self: Rc<Self>
) - Methods in external modules (but not external crates).
faux
also provides easy-to-use argument matchers.
Interactions With Other Proc Macros
While faux
makes no guarantees that it will work with other macro libraries, it should "just" work. There are some caveats, however. For a quick solution, try making the faux
attributes (e.g. #[faux::methods]
) the first attribute.
Explanation
If another proc-macro
modifies the signature of a method before faux
does its macro expansion, then it could modify the signature into something not supported by faux
. Unfortunately, the order of proc macros is not specified. However, in practice it seems to expand top-down (tested in Rust 1.42).
#[faux::create]
struct Foo { /*some items here */ }
#[faux::methods]
#[another_attribute]
impl Foo {
/* some methods here */
}
In the snippet above, #[faux::methods]
will expand first followed by #[another_attribute]
.faux
is effectively ignoring the other macro and expanding based on the code you wrote.
If #[faux::methods]
performs its expansion after another macro has modified the impl
block, #[faux::methods]
receives the expanded code. This code might contain different method signatures than what you originally wrote. Note that the other proc macro's expansion may create code that faux
cannot handle (e.g. explicit lifetimes).
For a concrete example, let's look at async-trait
. async-trait
effectively converts:
async fn run(&self, arg: Arg) -> Out {
/* stuff inside */
}
fn run<'async>(&'async self, arg: Arg) -> Pin<Box<dyn std::future::Future<Output = Out> + Send + 'async>> {
/* crazier stuff inside */
}
Because async-trait
adds explicit lifetimes to the method signature, which faux
cannot handle, having async-trait
do its expansion first breaks faux
. Note that even if faux
could handle explicit lifetimes, our signature is now so unwieldy that it would make mocks hard to work with. Because async-trait
just wants an async
function signature, and faux
does not modify function signatures, it is okay for faux
to expand first.
#[faux::methods]
#[async_trait]
impl MyStruct for MyTrait {
async fn run(&self, arg: Arg) -> Out {
/* stuff inside */
}
}
If you find a proc macro that faux
cannot handle, please open an issue to see if faux
is doing something unexpected that conflicts with that macro.
Goal
faux
was founded on the belief that traits with single implementations are an undue burden and an unnecessary layer of abstraction. Thus, faux
does not rely on trait definitions for every mocked object, which would pollute their function signatures with either generics or trait objects. faux
aims to create mocks out of user-defined structs, avoiding extra production code that exists solely for tests.
Inspiration
This library was inspired by mocktopus, a mocking library for nightly Rust that lets you mock any function. Unlike mocktopus, faux
works on stable Rust and deliberately only allows for mocking public methods in structs.