microgemm
General matrix multiplication with custom configuration in Rust.
Supports no_std
and no_alloc
environments.
The implementation is based on the BLIS microkernel approach.
Getting Started
The Kernel
trait is the main abstraction of microgemm
. You can implement it yourself or use kernels that are already provided out of the box.
gemm
use microgemm as mg;
use microgemm::Kernel as _;
fn main() {
let kernel = mg::kernels::Generic8x8Kernel::<f32>::new();
assert_eq!(kernel.mr(), 8);
assert_eq!(kernel.nr(), 8);
let pack_sizes = mg::PackSizes {
mc: 5 * kernel.mr(), // MC must be divisible by MR
kc: 190,
nc: 9 * kernel.nr(), // NC must be divisible by NR
};
let mut packing_buf = vec![0.0; pack_sizes.buf_len()];
let alpha = 2.0;
let beta = -3.0;
let (m, k, n) = (100, 380, 250);
let a = vec![2.0; m * k];
let b = vec![3.0; k * n];
let mut c = vec![4.0; m * n];
let a = mg::MatRef::new(m, k, &a, mg::Layout::RowMajor);
let b = mg::MatRef::new(k, n, &b, mg::Layout::RowMajor);
let mut c = mg::MatMut::new(m, n, &mut c, mg::Layout::RowMajor);
// c <- alpha a b + beta c
kernel.gemm(alpha, &a, &b, beta, &mut c, &pack_sizes, &mut packing_buf);
println!("{:?}", c.as_slice());
}
Also see no_alloc example for use without Vec
.
Implemented Kernels
Name | Scalar Types | Target |
---|---|---|
GenericNxNKernel (N: 2, 4, 8, 16, 32) |
T: Copy + Zero + One + Mul + Add | Any |
NeonKernel | f32 | aarch64 and target feature neon |
WasmSimd128Kernel | f32 | wasm32 and target feature simd128 |
Custom Kernel Implementation
use microgemm::{typenum::U4, Kernel, MatMut, MatRef};
struct CustomKernel;
impl Kernel for CustomKernel {
type Scalar = f64;
type Mr = U4;
type Nr = U4;
// dst <- alpha lhs rhs + beta dst
fn microkernel(
&self,
alpha: f64,
lhs: &MatRef<f64>,
rhs: &MatRef<f64>,
beta: f64,
dst: &mut MatMut<f64>,
) {
// lhs is col-major by default
assert_eq!(lhs.row_stride(), 1);
assert_eq!(lhs.nrows(), Self::MR);
// rhs is row-major by default
assert_eq!(rhs.col_stride(), 1);
assert_eq!(rhs.ncols(), Self::NR);
// dst is col-major by default
assert_eq!(dst.row_stride(), 1);
assert_eq!(dst.nrows(), Self::MR);
assert_eq!(dst.ncols(), Self::NR);
// your microkernel implementation...
}
}
Benchmarks
All benchmarks are performed on square matrices of dimension n
.
f32
PackSizes { mc: n, kc: n, nc: n }
aarch64 (M1)
n NeonKernel Generic4x4 Generic8x8 naive(rustc)
32 10.7µs 13.9µs 12.7µs 53.2µs
64 50.6µs 73µs 62.7µs 307.7µs
128 257.5µs 482.8µs 379.8µs 2.5ms
256 1ms 2ms 1.3ms 9.5ms
512 3.4ms 8.4ms 6ms 94.5ms
1024 25ms 66.4ms 46.4ms 882.7ms
License
Licensed under either of Apache License, Version 2.0 or MIT license at your option.