Error Set simplifies error management by providing a streamlined method for defining errors and easily converting between them. Resultingly, error handling becomes both straightforward and efficient.
Error Set is inspired by Zig's error set, and offers similar functionality.
Instead of defining various enums/structs for errors and hand rolling relations, use an error set:
use error_set::error_set;
error_set! {
MediaError = BookParsingError || DownloadError || ParseUploadError;
BookParsingError = {
MissingBookDescription,
IoError(std::io::Error),
} || BookSectionParsingError;
BookSectionParsingError = {
MissingName,
NoContents,
};
DownloadError = {
InvalidUrl,
IoError(std::io::Error),
};
ParseUploadError = {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
}
Cargo Expand
#[derive(Debug)]
pub enum MediaError {
MissingBookDescription,
IoError(std::io::Error),
MissingName,
NoContents,
InvalidUrl,
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
}
#[allow(unused_qualifications)]
impl std::error::Error for MediaError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match *self {
MediaError::IoError(ref source) => source.source(),
#[allow(unreachable_patterns)]
_ => None,
}
}
}
impl core::fmt::Display for MediaError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let variant_name = match *self {
MediaError::MissingBookDescription => "MediaError::MissingBookDescription",
MediaError::IoError(_) => "MediaError::IoError",
MediaError::MissingName => "MediaError::MissingName",
MediaError::NoContents => "MediaError::NoContents",
MediaError::InvalidUrl => "MediaError::InvalidUrl",
MediaError::MaximumUploadSizeReached => "MediaError::MaximumUploadSizeReached",
MediaError::TimedOut => "MediaError::TimedOut",
MediaError::AuthenticationFailed => "MediaError::AuthenticationFailed",
};
f.write_fmt($crate::format_args!("{}", variant_name))
}
}
impl From<BookParsingError> for MediaError {
fn from(error: BookParsingError) -> Self {
match error {
BookParsingError::MissingBookDescription => MediaError::MissingBookDescription,
BookParsingError::IoError(source) => MediaError::IoError(source),
BookParsingError::MissingName => MediaError::MissingName,
BookParsingError::NoContents => MediaError::NoContents,
}
}
}
impl From<BookSectionParsingError> for MediaError {
fn from(error: BookSectionParsingError) -> Self {
match error {
BookSectionParsingError::MissingName => MediaError::MissingName,
BookSectionParsingError::NoContents => MediaError::NoContents,
}
}
}
impl From<DownloadError> for MediaError {
fn from(error: DownloadError) -> Self {
match error {
DownloadError::InvalidUrl => MediaError::InvalidUrl,
DownloadError::IoError(source) => MediaError::IoError(source),
}
}
}
impl From<ParseUploadError> for MediaError {
fn from(error: ParseUploadError) -> Self {
match error {
ParseUploadError::MaximumUploadSizeReached => MediaError::MaximumUploadSizeReached,
ParseUploadError::TimedOut => MediaError::TimedOut,
ParseUploadError::AuthenticationFailed => MediaError::AuthenticationFailed,
}
}
}
impl From<std::io::Error> for MediaError {
fn from(error: std::io::Error) -> Self {
MediaError::IoError(error)
}
}
#[derive(Debug)]
pub enum BookParsingError {
MissingBookDescription,
IoError(std::io::Error),
MissingName,
NoContents,
}
#[allow(unused_qualifications)]
impl std::error::Error for BookParsingError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match *self {
BookParsingError::IoError(ref source) => source.source(),
#[allow(unreachable_patterns)]
_ => None,
}
}
}
impl core::fmt::Display for BookParsingError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let variant_name = match *self {
BookParsingError::MissingBookDescription => "BookParsingError::MissingBookDescription",
BookParsingError::IoError(_) => "BookParsingError::IoError",
BookParsingError::MissingName => "BookParsingError::MissingName",
BookParsingError::NoContents => "BookParsingError::NoContents",
};
f.write_fmt($crate::format_args!("{}", variant_name))
}
}
impl From<BookSectionParsingError> for BookParsingError {
fn from(error: BookSectionParsingError) -> Self {
match error {
BookSectionParsingError::MissingName => BookParsingError::MissingName,
BookSectionParsingError::NoContents => BookParsingError::NoContents,
}
}
}
impl From<std::io::Error> for BookParsingError {
fn from(error: std::io::Error) -> Self {
BookParsingError::IoError(error)
}
}
#[derive(Debug)]
pub enum BookSectionParsingError {
MissingName,
NoContents,
}
#[allow(unused_qualifications)]
impl std::error::Error for BookSectionParsingError {}
impl core::fmt::Display for BookSectionParsingError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let variant_name = match *self {
BookSectionParsingError::MissingName => "BookSectionParsingError::MissingName",
BookSectionParsingError::NoContents => "BookSectionParsingError::NoContents",
};
f.write_fmt($crate::format_args!("{}", variant_name))
}
}
#[derive(Debug)]
pub enum DownloadError {
InvalidUrl,
IoError(std::io::Error),
}
#[allow(unused_qualifications)]
impl std::error::Error for DownloadError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match *self {
DownloadError::IoError(ref source) => source.source(),
#[allow(unreachable_patterns)]
_ => None,
}
}
}
impl core::fmt::Display for DownloadError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let variant_name = match *self {
DownloadError::InvalidUrl => "DownloadError::InvalidUrl",
DownloadError::IoError(_) => "DownloadError::IoError",
};
f.write_fmt($crate::format_args!("{}", variant_name))
}
}
impl From<std::io::Error> for DownloadError {
fn from(error: std::io::Error) -> Self {
DownloadError::IoError(error)
}
}
#[derive(Debug)]
pub enum ParseUploadError {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
}
#[allow(unused_qualifications)]
impl std::error::Error for ParseUploadError {}
impl core::fmt::Display for ParseUploadError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let variant_name = match *self {
ParseUploadError::MaximumUploadSizeReached => {
"ParseUploadError::MaximumUploadSizeReached"
}
ParseUploadError::TimedOut => "ParseUploadError::TimedOut",
ParseUploadError::AuthenticationFailed => "ParseUploadError::AuthenticationFailed",
};
f.write_fmt($crate::format_args!("{}", variant_name))
}
}
which is also equivalent to writing the full expansion:
error_set! {
MediaError = {
IoError(std::io::Error),
MissingBookDescription,
MissingName,
NoContents,
InvalidUrl,
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
BookParsingError = {
MissingBookDescription,
IoError(std::io::Error),
MissingName,
NoContents,
};
BookSectionParsingError = {
MissingName,
NoContents,
};
DownloadError = {
InvalidUrl,
IoError(std::io::Error),
};
ParseUploadError = {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
}
Any above subset can be converted into a superset with .into()
or ?
. This makes correctly scoping and passing around errors a breeze. Error enums and error variants can also accept doc comments and attributes like #[derive(...)]
. The typical project approach is to have one errors.rs
file with a single error_set
. This keeps all the errors in one place and allows your IDE to autocomplete crate::errors::
with of all errors.
Basic Example
use error_set::error_set;
error_set! {
MediaError = {
IoError(std::io::Error)
} || BookParsingError || DownloadError || ParseUploadError;
BookParsingError = {
MissingBookDescription,
CouldNotReadBook(std::io::Error),
} || BookSectionParsingError;
BookSectionParsingError = {
MissingName,
NoContents,
};
DownloadError = {
InvalidUrl,
CouldNotSaveBook(std::io::Error),
};
ParseUploadError = {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
}
fn main() {
let book_section_parsing_error: BookSectionParsingError = BookSectionParsingError::MissingName;
let book_parsing_error: BookParsingError = book_section_parsing_error.into();
assert!(matches!(book_parsing_error, BookParsingError::MissingName));
let media_error: MediaError = book_parsing_error.into();
assert!(matches!(media_error, MediaError::MissingName));
let io_error = std::io::Error::new(std::io::ErrorKind::OutOfMemory, "oops out of memory");
let result_download_error: Result<(), DownloadError> = Err(io_error).coerce(); // `.coerce()` == `.map_err(Into::into)`
let result_media_error: Result<(), MediaError> = result_download_error.coerce(); // `.coerce()` == `.map_err(Into::into)`
assert!(matches!(result_media_error, Err(MediaError::IoError(_))));
}
coerce_macro: Each error set will generates a coerce!
macro to help handle coercion between partially intersecting sets.
let val = coerce!(setx => {
Ok(val) => val,
Err(SetX::X) => {}, // handle disjointedness
{ Err(SetX) => return Err(SetY) } // terminal coercion
})?;
More Details
Given:
error_set! {
SetX = {
X
} || Common;
SetY = {
Y
} || Common;
Common = {
A,
B,
C,
D,
E,
F,
G,
H,
};
}
rather than writing:
fn setx_result_to_sety_result() -> Result<(), SetY> {
let _ok = match setx_result() {
Ok(ok) => ok,
Err(SetX::X) => {} // handle disjointedness
Err(SetX::A) => {
return Err(SetY::A);
}
Err(SetX::B) => {
return Err(SetY::B);
}
Err(SetX::C) => {
return Err(SetY::C);
}
Err(SetX::D) => {
return Err(SetY::D);
}
Err(SetX::E) => {
return Err(SetY::E);
}
Err(SetX::F) => {
return Err(SetY::F);
}
Err(SetX::G) => {
return Err(SetY::G);
}
Err(SetX::H) => {
return Err(SetY::H);
}
};
Ok(())
}
one can write this, which compiles to the match
statement above:
fn setx_result_to_sety_result() -> Result<(), SetY> {
let _ok = coerce!(setx_result() => {
Ok(ok) => ok,
Err(SetX::X) => {}, // handle disjointedness
{ Err(SetX) => return Err(SetY) } // terminal coercion
});
Ok(())
}
The coerce!
macro is a flat fast (no tt muncher 🦫) declarative macro created by the error_set!
macro for the set. coerce!
behaves like a regular match
statement, except it allows a terminal coercion statement between sets. e.g.
{ Err(SetX) => return Err(SetY) }
{ Err(SetX) => Err(SetY) }
{ SetX => return SetY }
{ SetX => SetY }
With coerce!
, one can concisely handle specific variants of errors as they bubble up the call stack and propagate the rest.
tracing: Enables support for the tracing crate. Adds methods to Result
that are applied on Err
. Similar to anyhow's .context(..)
.
let value = result.warn("This a warning that will be passed to tracing if `Err`")?;
log: Enables support for the log crate. Adds methods to Result
that are applied on Err
. Similar to anyhow's .context(..)
.
let value = result.warn("This a warning that will be passed to log if `Err`")?;
If your project doesn't require handling specific error types and you just need to propagate errors up the call stack, then anyhow
is likely a good choice for you. It's straightforward and skips the need to define error types all together.
However, for libraries and general projects that require precise error handling and differentiation, error management can often become complex and unwieldy, especially if "mega enums" arise.
What is a Mega Enum?
A mega enum, or mega error enum, is an enumeration that consolidates various error types into one large enum, whereas the code would be more precise if split into multiple enums. These often arise due to refactors or developers opting for less intrusive programming approach. This method can lead to inefficiencies and confusion because it includes error variants that are not relevant in certain scopes.
Example Scenario:
Consider the following functions and their respective error types:
func1
can produce errorsa
andb
, represented byenum1
.func2
can produce errorsc
andd
, represented byenum2
.func3
calls bothfunc1
andfunc2
.
If func3
does not handle the errors from func1
and func2
, it must return an error enum that encompasses variants a
, b
, c
, and d
. Without a tool like error_set
, developers might skip defining enum1
and enum2
due to the complexity and instead create a mega enum with all possible error variants (a
, b
, c
, d
). This means that any caller of func1
or func2
would have to handle all these cases, even those that are not possible in that specific context.
How error_set
Simplifies Error Management:
error_set
allows you to define errors quickly and precisely. Correctly scoping errors is easy and no wrapping of various error enum types is necessary, just use .into()
or ?
(or coerce!
macro). This approach ensures that each function only deals with relevant error variants, avoiding the clutter and inefficiency of mega enums. By using error_set
, your project can maintain clear and precise error definitions, enhancing code readability and maintainability without the tedious process of manually defining and managing error relations.