AutoML in Rust ๐Ÿฆ€

Overview

Github CI Crates.io docs.rs

AutoML with SmartCore

AutoML is Automated Machine Learning, referring to processes and methods to make machine learning more accessible for a general audience. This crate builds on top of the smartcore machine learning framework, and provides some utilities to quickly train and compare models.

Usage

For instance, running the following:

let mut classifier = automl::classification::Classifier::default();
classifier.with_dataset(smartcore::dataset::breast_cancer::load_dataset());
classifier.compare_models();
print!("{}", classifier);

Will output this comparison of models usign cross-validation:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Model                          โ”‚ Training Accuracy โ”‚ Testing Accuracy โ”‚
โ•žโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ก
โ”‚ Random Forest Classifier       โ”‚ 1.00              โ”‚ 0.96             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Logistic Regression Classifier โ”‚ 0.97              โ”‚ 0.95             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Gaussian Naive Bayes           โ”‚ 0.95              โ”‚ 0.93             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ KNN Classifier                 โ”‚ 0.96              โ”‚ 0.92             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Categorical Naive Bayes        โ”‚ 0.96              โ”‚ 0.91             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Decision Tree Classifier       โ”‚ 1.00              โ”‚ 0.90             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Support Vector Classifier      โ”‚ 0.87              โ”‚ 0.85             โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

You can then train a final model using classifier.train_final_model() and perform inference using that model with the predict method.

Features

Currently this crate only has AutoML features for regression and classification. This includes the following models:

  • Regression
    • Decision Tree Regression
    • KNN Regression
    • Random Forest Regression
    • Linear Regression
    • Ridge Regression
    • LASSO
    • Elastic Net
    • Support Vector Regression
  • Classification
    • Random Forest Classification
    • Decision Tree Classification
    • Support Vector Classification
    • Logistic Regression
    • KNN Classification
You might also like...
Distributed compute platform implemented in Rust, and powered by Apache Arrow.
Distributed compute platform implemented in Rust, and powered by Apache Arrow.

Ballista: Distributed Compute Platform Overview Ballista is a distributed compute platform primarily implemented in Rust, powered by Apache Arrow. It

Tensors and differentiable operations (like TensorFlow) in Rust

autograd Differentiable operations and tensors backed by ndarray. Motivation Machine learning is one of the field where Rust lagging behind other lang

Rust numeric library with R, MATLAB & Python syntax

Peroxide Rust numeric library contains linear algebra, numerical analysis, statistics and machine learning tools with R, MATLAB, Python like macros. W

A fast, safe and easy to use reinforcement learning framework in Rust.
A fast, safe and easy to use reinforcement learning framework in Rust.

RSRL (api) Reinforcement learning should be fast, safe and easy to use. Overview rsrl provides generic constructs for reinforcement learning (RL) expe

Neural networks in Rust

deeplearn-rs Deep learning in Rust! This is my first shot at this. It's mostly just a proof of concept right now. The API will change. Status We have

A deep learning library for rust

Alumina An experimental deep learning library written in pure rust. Breakage expected on each release in the short term. See mnist.rs in examples or R

Machine learning in Rust.

Rustml Rustml is a library for doing machine learning in Rust. The documentation of the project with a descprition of the modules can be found here. F

Rust based Cross-GPU Machine Learning

HAL : Hyper Adaptive Learning Rust based Cross-GPU Machine Learning. Why Rust? This project is for those that miss strongly typed compiled languages.

Fast hierarchical agglomerative clustering in Rust.

kodama This crate provides a fast implementation of agglomerative hierarchical clustering. This library is released under the MIT license. The ideas a

Practice repo for learning Rust. Currently going through "Rust for JavaScript Developers" course.

rust-practice ?? Practice repo for learning Rust. Directories /rust-for-js-dev Files directed towards "Rust for JavaScript Developers" course. Thank y

Sammy Samkough 0 Dec 25, 2021
A Rust library with homemade machine learning models to classify the MNIST dataset. Built in an attempt to get familiar with advanced Rust concepts.

mnist-classifier Ideas UPDATED: Finish CLI Flags Parallelize conputationally intensive functions Class-based naive bayes README Image parsing Confusio

Neil Kaushikkar 0 Sep 2, 2021
๐Ÿฆ€Rust Turkiye - Rust Dersleri

Rust Turkiye - Rust Dersleri CURIOSITY - Featuring Richard Feynman Bu repo Rust Turkiye tarafindan duzenlenen Rust Dersleri egitiminin alistirma ve ko

Theo M. Bulut 12 Jan 14, 2023
A Rust machine learning framework.

Linfa linfa (Italian) / sap (English): The vital circulating fluid of a plant. linfa aims to provide a comprehensive toolkit to build Machine Learning

Rust-ML 2.2k Jan 2, 2023
Machine Learning library for Rust

rusty-machine This library is no longer actively maintained. The crate is currently on version 0.5.4. Read the API Documentation to learn more. And he

James Lucas 1.2k Dec 31, 2022
Rust library for Self Organising Maps (SOM).

RusticSOM Rust library for Self Organising Maps (SOM). Using this Crate Add rusticsom as a dependency in Cargo.toml [dependencies] rusticsom = "1.1.0"

Avinash Shenoy 26 Oct 17, 2022
Rust language bindings for TensorFlow

TensorFlow Rust provides idiomatic Rust language bindings for TensorFlow. Notice: This project is still under active development and not guaranteed to

null 4.1k Jan 1, 2023
Machine learning crate for Rust

rustlearn A machine learning package for Rust. For full usage details, see the API documentation. Introduction This crate contains reasonably effectiv

Maciej Kula 547 Dec 28, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Jan 1, 2023
ไธชไบบ็š„ rust ๅญฆไน ่ต„ๆ–™

?? ้€š็Ÿฅ: ้กน็›ฎๆ–‡ๆกฃ่ฟ็งปๅˆฐ: https://github.com/higker/learn-rust learning-rust-zh ไธชไบบ็š„ rust ๅญฆไน ่ต„ๆ–™ ๅญฆไน ็›ฎๅฝ• ็›ฎๅฝ• ๆบไปฃ็ ๅœฐๅ€ ็›ธๅ…ณ่งฃๆž ็ฌฌไธ€ไธชrust็จ‹ๅบ https://github.com/higker/learning-ru

Jarvib Ding 16 Jun 21, 2022