gpgpu
A simple GPU compute library based on wgpu
. It is meant to be used alongside wgpu
if desired.
To start using gpgpu
, just create a Framework
instance and follow the examples in the main repository.
Example
Small program that multiplies 2 vectors A and B; and stores the result in another vector C.
Rust program
use gpgpu::*;
fn main() -> GpuResult<()> {
// Framework initialization
let fw = Framework::default();
// Original CPU data
let cpu_data = (0..10000).into_iter().collect::<Vec<u32>>();
// GPU buffer creation
let buf_a = GpuBuffer::from_slice(&fw, &cpu_data); // Input
let buf_b = GpuBuffer::from_slice(&fw, &cpu_data); // Input
let buf_c = GpuBuffer::<u32>::new(&fw, cpu_data.len()); // Output
// Shader load from SPIR-V binary file
let shader = Shader::from_spirv_file(&fw, "<SPIR-V shader path>")?;
// or from a WGSL source file
let shader = Shader::from_wgsl_file(&fw, "<WGSL shader path>")?;
// Descriptor set and program creation
let desc = DescriptorSet::default()
.bind_buffer(&buf_a, GpuBufferUsage::ReadOnly)
.bind_buffer(&buf_b, GpuBufferUsage::ReadOnly)
.bind_buffer(&buf_c, GpuBufferUsage::ReadWrite);
let program = Program::new(&shader, "main").add_descriptor_set(desc); // Entry point
// Kernel creation and enqueuing
Kernel::new(&fw, program).enqueue(cpu_data.len() as u32, 1, 1); // Enqueuing, not very optimus 😅
let output = buf_c.read()?; // Read back C from GPU
for (a, b) in cpu_data.into_iter().zip(output) {
assert_eq!(a.pow(2), b);
}
Ok(())
}
Shader program
The shader is writen in WGSL
// Vector type definition. Used for both input and output
[[block]]
struct Vector {
data: [[stride(4)]] array<u32>;
};
// A, B and C vectors
[[group(0), binding(0)]] var<storage, read> a: Vector;
[[group(0), binding(1)]] var<storage, read> b: Vector;
[[group(0), binding(2)]] var<storage, read_write> c: Vector;
[[stage(compute), workgroup_size(1)]]
fn main([[builtin(global_invocation_id)]] global_id: vec3<u32>) {
c.data[global_id.x] = a.data[global_id.x] * b.data[global_id.x];
}